Implant cementation, step by step

Chandur Wadhani, 1 Alfonso Piñeyro 2

Introduction

One cause of local tissue inflammation associated with dental implants that has recently come to light is dental cement. Cements have been directly linked with peri-implant diseases and have been blamed for bone loss and implant failure. One aspect of the disease process that is especially concerning is the time between restoring the implant and the disease process – on average three years pass before dentists discover a problem, with a range of four months to beyond nine years.

Dentists should be made aware of the differences between implants and teeth. Because their peri-implant biology is not the same, the appropriate cementation techniques, suitable cement selections, and even the procedures for the clean-up of excess cement are different. This article will briefly highlight these issues and offer solutions to overcome the attendant problems.

1 Chandur Wadhani
2 Alfonso Piñeyro

Figure 1: Radiograph and photograph of failed implant with cement remnants.

Figure 2: This patient presented five years after the crown was cemented. When a flap was raised the bone loss became apparent, as did the cement around the implant.
The crown is painted internally with a water-soluble lubricant such as KY jelly (Vaseline can be used but it must be adequately cleaned later). This allows PTFE (plumbers tape, which is 50 microns thick) to be adapted to the inside of the crown using a dry brush. Complete the adaptation by gently pushing the abutment into the crown and then carefully removing it. Inspect the inside of the crown to see if the PTFE is well formed.
To make the CCA: Using a fast-setting impression or bite registration (Blu-Mousse) material, fill the inside of the crown and continue to overfill until a “handle” is produced. (Hint: Use a fine-tip nozzle.)

Remove the CCA, then remove the PTFE and clean out the inside of the crown (important) to remove the KY jelly or Vaseline.

Now you have a chair-side copy abutment. The CCA is 50 microns smaller than the inside of the crown. Inspect it, compare it to the actual abutment, and make sure you know the orientation.

The CCA is now ready for use. Place the abutment in the patient’s mouth, confirm that it sits, and torque the screw to the appropriate Ncm value. The crown is now ready to be cemented. Load the crown with any amount of cement you wish—the CCA will subsequently be pushed into the crown, and the excess cement will be extruded chair-side and easily removed. (This is done outside of the mouth.)

Inspect the inside of the crown for an even cement layer. If you find any “bare” areas, just add a little extra. Then seat the crown in the mouth.
Many advantages of the CCA

A fast, inexpensive, simple technique, this approach limits excess cement to an absolute minimum, and makes cleanup quicker and easier. The CCA can be used for custom, stock and even multiple abutments.

The CCA is an improvement over using the actual abutment, or laboratory abutments, which do not provide quite enough cement space to assure suitable amounts of cement for problem-free crown retention. The CCA produces the ideal amount.

Special thanks to Drs. Ken Akimoto and Franco Audia for providing the cases and the associated photographs in this article.

References


This article is a reprint from Nobel Biocare News Vol. 13, No. 1, 2011. © Nobel Biocare Services AG, 2011.